Sains Malaysiana 53(6)(2024): 1295-1307
http://doi.org/10.17576/jsm-2024-5306-06
An Ultrasensitive Electrochemical Enzymatic
Urea Biosensor Based on Aniline/N-Butyl Acrylate Conducting Polymer-Modified Screen-Printed Electrode
(Biosensor Urea Elektrokimia Enzimatik Ultrasensitif Berasaskan Elektrod Bercetak Skrin Terubah Suai Polimer Berkonduksi Anilina/N-Butil Akrilat)
ALIZAR ULIANAS1,*, SHARINA ABU HANIFAH2, LING LING TAN3, NORMAZIDA ROZI2, LEE YOOK HENG2, INDANG DEWATA1, MAWARDI MAWARDI1,
YULKIFLI1, RAHADIAN ZAINUL1, ELSA
YUNIARTI1, OKTA SURYANI1 & TRISNA KUMALA SARI1
1Biosensor &
Chemical Sensor Research Centre, Department of Chemistry, Faculty of
Mathematics and Natural Science, Universitas Negeri Padang, Jl. Prof. Hamka, Padang 25131, Indonesia
2Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
3Southeast Asia Disaster Prevention Research Initiative
(SEADPRI), Institute for Environment and Development (LESTARI), Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Received: 8 September 2023/Accepted: 17 May 2024
Abstract
An enzymatic electrochemical biosensor for urea detection was developed using the
succinimide-modified aniline/n-butyl acrylate (nBA) conducting polymer. This aniline/nBA conducting polymer was synthesized by photopolymerization with the succinimide moiety incorporated during the photocuring procedure. The urease enzyme originating from Jack beans was
chemically grafted on the succinimide-functionalized aniline/nBA conducting polymer, which was attached to a screen-printed carbon paste electrode (SPE). The enzymatic hydrolysis of urea by the
urease electrode diminished the voltammetric biosensor response as a result of the cascaded chemical reaction between the
enzymatically hydrolyzed hydroxide (OH-)
ion and the K3Fe(CN)6 redox species that generating the
side products (Fe(OH)3, CN- ion, and KCN), which impeded the
electron transfer of the redox mediator at electrode-electrolyte interface. In
view of the amount of side products produced was proportional to the urea concentration associated in the enzymatic
reaction with the immobilized urease enzymes, this has allowed the proposed
enzymatic biosensor to demonstrate an inverse sensitivity concept of detecting
urea concentration in an ultrasensitive manner. The electron transfer rate
constant (k) of the urease electrode based on aniline/nBA hybrid material at the electrode-electrolyte interface
was determined at 5.374×10-5 cm s-1. The linear response
range of the enzymatic urea biosensor was obtained from 1×10-10 mM to 1×10-1 mM (R2=0.9834) by differential pulse
voltammetry (DPV) with a limit of detection of 4.72×10-11 mM at pH 5.0 and
enzymatic hydrolysis time of 30 min. The voltammetric urea biosensor response showed good
reproducibility with a promising relative standard deviation (RSD) acquired at 5.0% (n=9). The ultra-high sensitivity performance of the developed enzymatic
biosensor based on aniline/nBA conducting polymer
towards determination of urea concentrations at low levels has demonstrated superior performance across previously reported
electrochemical urea biosensors based on various nanostructured conducting
materials.
Keywords: Conducting polymer; electrochemical transducer; succinimide-modified polymer; urea biosensor
Abstrak
Biosensor elektrokimia enzimatik untuk pengesanan
urea telah dibangunkan menggunakan suksinimida terubah suai polimer berkonduksi
anilina/n-butil akrilat (nBA). Polimer berkonduksi anilina/nBA ini adalah
disintesis melalui pempolimeran foto dengan bahagian suksinimida digabungkan
semasa prosedur pempolimeran foto. Enzim urease yang berasal daripada kacang Jack telah diikat secara kimia dengan kumpulan berfungsi suksinimida pada polimer
berkonduksi anilina/nBA yang dipegun pada elektrod karbon bercetak skrin (SPE). Hidrolisis enzimatik
urea oleh elektrod urease mengurangkan rangsangan biosensor voltammetrik
daripada tindak balas kimia melata antara ion hidroksida (OH-)
terhidrolisis secara enzimatik dan spesies redoks K3Fe(CN)6 yang menghasilkan produk sampingan, (Fe(OH)3, ion CN- dan
KCN), yang menghalang pemindahan elektron pengantara redoks pada antara muka
elektrod-elektrolit. Memandangkan jumlah produk sampingan yang dihasilkan
adalah berkadaran dengan kepekatan urea yang terlibat dalam tindak balas enzimatik
dengan enzim urease pegun, ini telah membenarkan
biosensor enzim yang dicadangkan untuk menunjukkan konsep kepekaan songsang
untuk mengesan kepekatan urea secara ultrasensitif. Pemalar kadar pemindahan
elektron (k) elektrod urease berasaskan bahan hibrid anilina/nBA pada
antara muka elektrod-elektrolit diperoleh pada 5.374×10-5 cm s-1.
Julat rangsangan linear biosensor urea enzimatik diperoleh daripada 1×10-10 mM hingga 1×10-1 mM (R2=0.9834) dengan kaedah voltammetri
denyutan pembeza (DPV) dengan had pengesanan 4.72×10-11 mM pada pH
5.0 dan masa hidrolisis enzimatik selama 30 min. Rangsangan biosensor urea
voltammetrik menunjukkan kebolehulangan yang baik dengan sisihan piawai relatif
(RSD) yang menggalakkan diperoleh pada 5.0% (n=9). Prestasi kepekaan ultra
tinggi biosensor enzimatik yang dibangunkan berasaskan polimer berkonduksi
anilina/nBA terhadap penentuan kepekatan urea pada kepekatan rendah telah
menunjukkan prestasi unggul merentas biosensor urea elektrokimia yang
dilaporkan sebelum ini berasaskan pelbagai bahan berkonduksi berstruktur nano.
Kata kunci: Biosensor urea; polimer berkonduksi;
polimer terubah suai suksinimida; transduser elektrokimia
REFERENCES
Abi Munajad, Cahyo Subroto & Suwarno. 2018.
Fourier Transform Infrared (FTIR) spectroscopy analysis of transformer paper in
mineral oil-paper composite insulation under accelerated thermal aging. Energies 11(2): 364. https://doi.org/10.3390/en11020364
Achmann, S., Hämmerle, M. & Moos, R. 2008. Amperometric
enzyme-based biosensor for direct detection of formaldehyde in the gas phase:
Dependence on electrolyte composition. Electroanalysis 20(4): 410- 417.
https://doi.org/10.1002/elan.200704069
Ahmad, M.S., Isa, I.M., Hashim, N., Saidin, M.I., Si,
S.M., Zainul, R., Ulianas, A. & Mukdasai, S. 2019. Zinc layered
hydroxide-sodium dodecyl sulphate-isoprocarb modified multiwalled carbon
nanotubes as sensor for electrochemical determination of dopamine in alkaline
medium. International Journal of Electrochemical Science 14(9):
9080-9091. https://doi.org/10.20964/2019.09.54
Alizar Ulianas, Lee Yook Heng & Musa Ahmad. 2011.
A biosensor for urea from succinimide-modified acrylic microspheres based on
reflectance transduction. Sensors 11(9): 8323-8338.
https://doi.org/10.3390/s110908323
Alizar Ulianas, Lee Yook Heng, Musa Ahmad, Han-Yih
Lau, Zamri Ishak & Tan Ling Ling. 2014. A regenerable screen-printed dna
biosensor based on acrylic microsphere-gold nanoparticle composite for
genetically modified soybean determination. Sensors and Actuators, B:
Chemical 190: 694-701. https://doi.org/10.1016/j.snb.2013.09.040
Ansari, R. & Keivani, M.B. 2006. Polyaniline
conducting electroactive polymers thermal and environmental stability studies. E-Journal
of Chemistry 3(4): 202-217. https://doi.org/10.1155/2006/395391
Bozgeyik, İ., Şenel, M., Çevik, E. &
Abasıyanık, M.F. 2011. A novel thin film amperometric urea biosensor
based on urease-immobilized on poly (N-Glycidylpyrrole-Co-Pyrrole). Current
Applied Physics 11: 1083-1088. https://doi.org/10.1016/j.cap.2011.01.041
Chen, K., Song, S. & Xue, D. 2014. An ionic
aqueous pseudocapacitor system: Electroactive ions in both a salt electrode and
redox electrolyte. RSC Advances 4(44): 23338-23343.
https://doi.org/10.1039/c4ra03037k
Das, G. & Yoon, H.H. 2015. Amperometric urea
biosensors based on sulfonated graphene/polyaniline nanocomposite. Int. J.
Nanomedicine 10(Spec Iss): 55-66. doi: 10.2147/IJN.S88315
Dervisevic, M. & Nyangwebah, J.N. 2017.
Development of novel amperometric urea biosensor based on Fc-PAMAM and MWCNT
bio-nanocomposite film. Sensors and Actuators B: Chemical 246: 920-926.
https://doi.org/10.1016/j.snb.2017.02.122
Dervisevic, M., Dervisevic, E. & Şenel, M.
2017. Design of amperometric urea biosensor based on MWCNT/Urease. Sensors
& Actuators: B. Chemical 254: 93-101.
https://doi.org/10.1016/j.snb.2017.06.161
Emami Meibodi, A.S. & Haghjoo, S. 2014.
Amperometric urea biosensor based on covalently immobilized urease on an
electrochemically polymerized film of polyaniline containing MWCNTs. Synthetic
Metals 194: 1-6. https://doi.org/10.1016/j.synthmet.2014.04.009
Ertell, K. 2006. A review of toxicity and use and
handling considerations for guanidine, guanidine hydrochloride, and urea. Pacific
Northwest National Laboratory. U.S. Department of Energy.
Fanjul-Bolado, P., Hernández-Santos, D.,
Lamas-Ardisana, P.J., Martín-Pernía, A. & Costa-García, A. 2008.
Electrochemical characterization of screen-printed and conventional carbon
paste electrodes. Electrochimica Acta 53(10): 3635-3642.
https://doi.org/10.1016/j.electacta.2007.12.044
Farzaneh Shalileh, Hossein Sabahi, Mohammad Golbashy,
Mehdi Dadmehr & Morteza Hosseini. 2023. A simple smartphone-assisted
paper-based colorimetric biosensor for the detection of urea adulteration in
milk based on an environment-friendly pH-sensitive nanocomposite. Analytica
Chimica Acta 1284: 341935. https://doi.org/10.1016/j.aca.2023.341935
Goldstein, E.L. & Van de Mark, M.R. 1982.
Electrode cleaning and anion effects on Ks for K3Fe(CN)6 couple. Electrochimica
Acta 27(8): 1079-1085. https://doi.org/10.1016/0013-4686(82)80113-8
Hao, W., Das, G. & Yoon, H.H. 2015. Fabrication
of an amperometric urea biosensor using urease and metal catalysts immobilized
by a polyion complex. Journal of Electroanalytical Chemistry. https://doi.org/10.1016/j.jelechem.2015.03.015
Haslinda Abdul Hamid, Panapan Kunakornwattana, Norain
Isa & Khairunisak Abdul Razak. 2023. Sensitive and selective detection of
chloroform by current-voltage using ZnO nanorods modified electrode. Sains
Malaysiana 52(4): 1173-1188. https://doi.org/10.17576/jsm-2023-5204-11
Hassan, R.Y.A., Kamel, A.M., Hashem, M.S., Hassan,
H.N.A. & Abd El-Ghaffar, M.A. 2018. A new disposable biosensor
platform : Carbon nanotube/poly (o-Toluidine) nanocomposite for direct
biosensing of urea. Journal of Solid State Electrochemistry 22:
1817-1823.
Kuo, P-Y., Dong, Z-X. & Chen, Y-Y. 2021. The
hysteresis reduction approach for urea biosensor modified by silver
nanoparticles. IEEE Transactions on
Nanotechnology 20: 311-320.
Luo, J., Sam, A., Hu, B., DeBruler, C., Wei, X.,
Wang, W. & Liu, T.L. 2017. Unraveling pH dependent cycling stability of
ferricyanide/ferrocyanide in redox flow batteries. Nano Energy 42:
215-221. https://doi.org/10.1016/j.nanoen.2017.10.057
Mello, H.J.N.P.D. & Mulato, M. 2020.
Enzymatically functionalized polyaniline thin films produced with one-step
electrochemical immobilization and its application in glucose and urea
potentiometric biosensors. Biomedical Microdevices 22: 22.
Navas Díaz, A., Ramos Peinado, M.C. & Torijas
Minguez, M.C. 1998. Sol-gel horseradish peroxidase biosensor for hydrogen
peroxide detection by chemiluminescence. Analytica Chimica Acta 363(2-3): 221-227. https://doi.org/10.1016/S0003-2670(98)00080-4
Nicholson, R.S. 1965. Some examples of the numerical
solution of nonlinear integral equations. Analytical Chemistry 37(6):
667-671. https://doi.org/10.1021/ac60225a009
Noor Izaanin Ramli, Lee Yook Heng & Ling Ling
Tan. 2022. A simple potentiometric biosensor based on carboxylesterase for the
analysis of aspartame. Sains Malaysiana 51(9): 2913-2924.
https://doi.org/10.17576/jsm-2022-5109-14
Noviany Noviany, M. Hanif Amrulloh, Mohamad Rafi,
Bambang Irawan, Wisnu Ananta Kusuma, Sutopo Hadi, R. Supriyanto, Risa Nofiani,
M. Hazwan Hussin & Suripto Dwi Yuwono. 2023. FTIR-based metabolomics for
characterization of antioxidant activity of different parts of Sesbania
grandiflora plant. Sains Malaysiana 52(1): 165-174.
https://doi.org/10.17576/jsm-2023-5201-13
Nurashikin Abd Azis, Illyas Isa, Norhayati Hashim,
Mohamad Syahrizal Ahmad & Siti Nur. 2019. Voltammetric determination of
bisphenol a in the presence of uric acid using a Zn /Al-LDH-QM modified MWCNT
paste electrode. International Journal of Electrochemical Science 14(11): 10607-10621. https://doi.org/10.20964/2019.11.46
Öndeş, B., Akpinar, F., Uygun, M., Muti, M.
& Uygun, D.A. 2020. High stability potentiometric urea biosensor based on
enzyme attached nanoparticles. Microchemical Journal 2020: 105667.
https://doi.org/10.1016/j.microc.2020.105667.
Pibarot, P. & Pilard, S. 2012. Analysis of urea
in petfood matrices: Comparison of spectro-colorimetric, enzymatic and liquid
chromatography electrospray ionization high resolution mass spectrometry
methods. American Journal of Analytical Chemistry 3(9): 613-621.
https://doi.org/10.4236/ajac.2012.39080
Qin, Y. & Cabral, J.M.S. 2002. Review properties
and applications of urease. Biocatalysis and Biotransformation 20(1):
1-14. https://doi.org/10.1080/10242420210154
Rahmanian, R. & Mozaffari, S.A. 2014. Development
of novel amperometric urea biosensor based on Fc-PAMAM and MWCNT
bio-nanocomposite fil. Sensors & Actuators: B. Chemical 246:
920-926. https://doi.org/10.1016/j.snb.2014.10.129
Rajesh, Bisht, V., Takashima, W. & Kaneto, K.
2005. An amperometric urea biosensor based on covalent immobilization of urease
onto an electrochemically prepared copolymer poly(N-3-aminopropyl
pyrrole-co-pyrrole) film. Biomaterials 26(17): 3683-3690.
https://doi.org/10.1016/j.biomaterials.2004.09.024
Sanko, V., Şenocak, A., Tümay, S.O. &
Demirbas, E. 2023. A novel comparative study for electrochemical urea biosensor
design: Effect of different ferrite nanoparticles (MFe2O4,
M: Cu, Co, Ni, Zn) in urease immobilized composite system. Bioelectrochemistry 149: 108324. https://doi.org/10.1016/j.bioelechem.2022.108324
Shukla, S.K., Mishra, A.K., Mamba, B.B. &
Arotiba, O.A. 2014. Enzyme and microbial technology zirconia-poly (propylene
imine) dendrimer nanocomposite based electrochemical urea biosensor. Enzyme
and Microbial Technology 66: 48-55.
https://doi.org/10.1016/j.enzmictec.2014.08.003
Siti Veren Joana Sury, Alizar Ulianas & Syamsi
Aini. 2021. Synthesis of conducting polyaniline with photopolymerization method
and characterization. Journal of Physics: Conference Series 1788:
012004. https://doi.org/10.1088/1742-6596/1788/1/012004
Štikoniene, O., Ivanauskas, F. & Laurinavicius,
V. 2010. The influence of external factors on the operational stability of the
biosensor response. Talanta 81(4-5): 1245-1249. https://doi.org/10.1016/j.talanta.2010.02.016
Sun, M., Ma, X.X., Yao, Q.X., Wang, R.C., Ma, Y.X.,
Feng, G., Shang, J.X., Xu, L. & Yang, Y.H. 2011. GC-MS and TG-FTIR study of
petroleum ether extract and residue from low temperature coal tar. Energy
and Fuels 25(3): 1140-1145. https://doi.org/10.1021/ef101610z
Waware, U.S., Hamouda, A.M.S. & Majumdar, D.
2020. Synthesis, characterization and physicochemical studies of copolymers of
aniline and 3-nitroaniline. Polymer Bulletin 77(9): 4469-4488.
https://doi.org/10.1007/s00289-019-02957-y
*Corresponding author; email: alizarulianas@fmipa.unp.ac.id
|